565 research outputs found

    Second-trimester amniotic fluid proteins changes in subsequent spontaneous preterm birth

    Get PDF
    IntroductionThe global sequence of the pathogenesis of preterm labor remains unclear. This study aimed to compare amniotic fluid concentrations of extracellular matrix-related proteins (procollagen, osteopontin and IL-33), and of cytokines (IL-19, IL-6, IL-20, TNF alpha, TGF beta, and IL-1 beta) in asymptomatic women with and without subsequent spontaneous preterm delivery. Material and methodsWe used amniotic fluid samples of singleton pregnancy, collected by amniocentesis between 16 and 20 weeks' gestation, without stigmata of infection (i.e., all amniotic fluid samples were tested with broad-range 16 S rDNA PCR to distinguish samples with evidence of past bacterial infection from sterile ones), during a randomized, double-blind, placebo-controlled trial to perform a nested case-control laboratory study. Cases were women with a spontaneous delivery before 37 weeks of gestation (preterm group). Controls were women who gave birth at or after 39 weeks (full term group). Amniotic fluid concentrations of the extracellular matrix-related proteins and cytokines measured by immunoassays were compared for two study groups. : NCT00718705. ResultsBetween July 2008 and July 2011, in 12 maternal-fetal medicine centers in France, 166 women with available PCR-negative amniotic fluid samples were retained for the analysis. Concentrations of procollagen, osteopontin, IL-19, IL-6, IL-20, IL-33, TNF alpha, TGF beta, and IL-1 beta were compared between the 37 who gave birth preterm and the 129 women with full-term delivery. Amniotic fluid levels of procollagen, osteopontin, IL-19, IL-33, and TNF alpha were significantly higher in the preterm than the full-term group. IL-6, IL-20, TGF beta, and IL-1 beta levels did not differ between the groups. ConclusionsIn amniotic fluid 16 S rDNA PCR negative samples obtained during second-trimester amniocentesis, extracellular matrix-related protein concentrations (procollagen, osteopontin and IL-33), together with IL-19 and TNF alpha, were observed higher at this time in cases of later spontaneous preterm birth

    Geographical range in liverworts: does sex really matter?

    Get PDF
    AimWhy some species exhibit larger geographical ranges than others remains a fundamental, but largely unanswered, question in ecology and biogeography. In plants, a relationship between range size and mating system was proposed over a century ago and subsequently formalized in Baker's Law. Here, we take advantage of the extensive variation in sexual systems of liverworts to test the hypothesis that dioecious species compensate for limited fertilization by producing vegetative propagules more commonly than monoecious species. As spores are assumed to contribute to random long-distance dispersal, whereas vegetative propagules contribute to colony maintenance and frequent short-distance dispersal, we further test the hypothesis that monoecious species exhibit larger geographical ranges than dioecious ones.LocationWorldwide.MethodsWe used comparative phylogenetic methods to assess the correlation between range size and life history traits related to dispersal, including mating systems, spore size and production of specialized vegetative propagules.ResultsNo significant correlation was found between dioecy and production of vegetative propagules. However, production of vegetative propagules is correlated with the size of geographical ranges across the liverwort tree of life, whereas sexuality and spores size are not. Moreover, variation in sexual systems did not have an influence on the correlation between geographical range and production of asexual propagules.Main conclusionsOur results challenge the long-held notion that spores, and not vegetative propagules, are involved in long-distance dispersal. Asexual reproduction seems to play a major role in shaping the global distribution patterns of liverworts, so that monoecious species do not tend to display, on average, broader distribution ranges than dioecious ones. Our results call for further investigation on the spatial genetic structure of bryophyte populations at different geographical scales depending on their mating systems to assess the dispersal capacities of spores and asexual propagules and determine their contribution in shaping species distribution ranges

    Association analysis of two single-nucleotide polymorphisms of the RELN gene with autism in the South African population

    Get PDF
    BACKGROUND: Autism (MIM209850) is a neurodevelopmental disorder characterized by a triad of impairments, namely impairment in social interaction, impaired communication skills, and restrictive and repetitive behavior. A number of family and twin studies have demonstrated that genetic factors play a pivotal role in the etiology of autistic disorder. Various reports of reduced levels of reelin protein in the brain and plasma in autistic patients highlighted the role of the reelin gene (RELN) in autism. There is no such published study on the South African (SA) population. AIMS: The aim of the present study was to find the genetic association of intronic rs736707 and exonic rs362691 (single-nucleotide polymorphisms [SNPs] of the RELN gene) with autism in a SA population. METHODS: Genomic DNA was isolated from cheek cell swabs from autistic (136) as well as control (208) subjects. The TaqMan® Real-Time polymerase chain reaction and genotyping assay was utilized to determine the genotypes. RESULTS: A significant association of SNP rs736707, but not for SNP rs362691, with autism in the SA population is observed. CONCLUSION: There might be a possible role of RELN in autism, especially for SA populations. The present study represents the first report on genetic association studies on the RELN gene in the SA population.Web of Scienc

    The RING-CH ligase K5 antagonizes restriction of KSHV and HIV-1 particle release by mediating ubiquitin-dependent endosomal degradation of tetherin

    Get PDF
    Tetherin (CD317/BST2) is an interferon-induced membrane protein that inhibits the release of diverse enveloped viral particles. Several mammalian viruses have evolved countermeasures that inactivate tetherin, with the prototype being the HIV-1 Vpu protein. Here we show that the human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) is sensitive to tetherin restriction and its activity is counteracted by the KSHV encoded RING-CH E3 ubiquitin ligase K5. Tetherin expression in KSHV-infected cells inhibits viral particle release, as does depletion of K5 protein using RNA interference. K5 induces a species-specific downregulation of human tetherin from the cell surface followed by its endosomal degradation. We show that K5 targets a single lysine (K18) in the cytoplasmic tail of tetherin for ubiquitination, leading to relocalization of tetherin to CD63-positive endosomal compartments. Tetherin degradation is dependent on ESCRT-mediated endosomal sorting, but does not require a tyrosine-based sorting signal in the tetherin cytoplasmic tail. Importantly, we also show that the ability of K5 to substitute for Vpu in HIV-1 release is entirely dependent on K18 and the RING-CH domain of K5. By contrast, while Vpu induces ubiquitination of tetherin cytoplasmic tail lysine residues, mutation of these positions has no effect on its antagonism of tetherin function, and residual tetherin is associated with the trans-Golgi network (TGN) in Vpu-expressing cells. Taken together our results demonstrate that K5 is a mechanistically distinct viral countermeasure to tetherin-mediated restriction, and that herpesvirus particle release is sensitive to this mode of antiviral inhibition

    Hybrid functional study of proper and improper multiferroics

    Full text link
    We present a detailed study of the structural, electronic, magnetic and ferroelectric properties of prototypical \textit{proper} and \textit{improper} multiferroic (MF) systems such as BiFeO3_{3} and orthorhombic HoMnO3_{3}, respectively, within density functional theory (DFT) and using the Heyd-Scuseria-Ernzerhof hybrid functional (HSE). By comparing our results with available experimental data as well as with state-of-the-art GW calculations, we show that the HSE formalism is able to account well for the relevant properties of these compounds and it emerges as an accurate tool for predictive first-principles investigations on multiferroic systems. We show that effects beyond local and semilocal DFT approaches (as provided by HSE) are necessary for a realistic description of MFs. For the electric polarization, a decrease is found for MFs with magnetically-induced ferroelectricity, such as HoMnO3_3, where the calculated polarization changes from \sim 6 μC/cm2\mu C/cm^2 using Perdew-Burke-Ernzerhof (PBE) to \sim 2 μC/cm2\mu C/cm^2 using HSE. However, for \textit{proper} MFs, such as BiFeO3_{3}, the polarization slightly increases upon introduction of exact exchange. Our findings therefore suggest that a general trend for the HSE correction to bare density functional cannot be extracted; rather, a specific investigation has to be carried out on each compound.Comment: Revised version. In press in PCC

    Ultrastructure of the Interlamellar Membranes of the Nacre of the Bivalve Pteria hirundo, Determined by Immunolabelling

    Get PDF
    The current model for the ultrastructure of the interlamellar membranes of molluscan nacre imply that they consist of a core of aligned chitin fibers surrounded on both sides by acidic proteins. This model was based on observations taken on previously demineralized shells, where the original structure had disappeared. Despite other earlier claims, no direct observations exist in which the different components can be unequivocally discriminated. We have applied different labeling protocols on non-demineralized nacreous shells of the bivalve Pteria. With this method, we have revealed the disposition and nature of the different fibers of the interlamellar membranes that can be observed on the surface of the nacreous shell of the bivalve Pteria hirundo by high resolution scanning electron microscopy (SEM). The minor chitin component consists of very thin fibers with a high aspect ratio and which are seemingly disoriented. Each fiber has a protein coat, which probably forms a complex with the chitin. The chitin-protein-complex fibers are embedded in an additional proteinaceous matrix. This is the first time in which the sizes, positions and distribution of the chitin fibers have been observed in situ.AJOM was financed by a PhD Grant of the FPI program from the Spanish Ministerio de Ciencia e Innovación; TCB's PhD Grant belonged to the FPU Program of the same Ministry. AJOM and AGC were supported by Projects CGL2010-20748-C02-01 and CGL2013-48247-P of the mentioned Ministry, and RNM6433 of the Consejería de Economía, Innovación y Ciencia of the Junta de Andalucía. The European COST Action TD0903 contributed via two Short Term Scientific Missions to AJOM in FM's lab in Dijon

    Evolution of the Neckeraceae (Bryophyta): resolving the backbone phylogeny

    Get PDF
    Earlier phylogenetic studies, including species belonging to the Neckeraceae, have indicated that this pleurocarpous moss family shares a strongly supported sister group relationship with the Lembophyllaceae, but the family delimitation of the former needs adjustment. To test the monophyly of the Neckeraceae, as well as to redefine the family circumscription and to pinpoint its phylogenetic position in a larger context, a phylogenetic study based on molecular data was carried out. Sequence data were compiled, combining data from all three genomes: nuclear ITS1 and 2, plastid trnS-rps4-trnT-trnL-trnF and rpl16, and mitochondrial nad5 intron. The Neckeraceae have sometimes been divided into the two families, Neckeraceae and Thamnobryaceae, a division rejected here. Both parsimony and Bayesian analyses of molecular data revealed that the family concept of the Neckeraceae needs several further adjustments, such as the exclusion of some individual species and smaller genera as well as the inclusion of the Leptodontaceae. Within the family three well-supported clades (A, B and C) can be distinguished. Members of clade A are mainly non-Asiatic and nontropical. Most species have a weak costa and immersed capsules with reduced peristomes (mainly Neckera spp.) and the teeth at the leaf margins are usually unicellular. Clade B members are also mainly non-Asiatic. They are typically fairly robust, distinctly stipilate, having a single, at least relatively strong costa, long setae (capsules exserted), and the peristomes are well developed or only somewhat reduced. Members of clade C are essentially Asiatic and tropical. The species of this clade usually have a strong costa and a long seta, the seta often being mammillose in its upper part. The peristome types in this clade are mixed, since both reduced and unreduced types are found. Several neckeraceous genera that were recognised on a morphological basis are polyphyletic (e.g. Neckera, Homalia, Thamnobryum, Porotrichum). Ancestral state reconstructions revealed that currently used diagnostic traits, such as the leaf asymmetry and costa strength are highly homoplastic. Similarly, the reconstructions revealed that the 'reduced' sporophyte features have evolved independently in each of the three clades.Earlier phylogenetic studies, including species belonging to the Neckeraceae, have indicated that this pleurocarpous moss family shares a strongly supported sister group relationship with the Lembophyllaceae, but the family delimitation of the former needs adjustment. To test the monophyly of the Neckeraceae, as well as to redefine the family circumscription and to pinpoint its phylogenetic position in a larger context, a phylogenetic study based on molecular data was carried out. Sequence data were compiled, combining data from all three genomes: nuclear ITS1 and 2, plastid trnS-rps4-trnT-trnL-trnF and rpl16, and mitochondrial nad5 intron. The Neckeraceae have sometimes been divided into the two families, Neckeraceae and Thamnobryaceae, a division rejected here. Both parsimony and Bayesian analyses of molecular data revealed that the family concept of the Neckeraceae needs several further adjustments, such as the exclusion of some individual species and smaller genera as well as the inclusion of the Leptodontaceae. Within the family three well-supported clades (A, B and C) can be distinguished. Members of clade A are mainly non-Asiatic and nontropical. Most species have a weak costa and immersed capsules with reduced peristomes (mainly Neckera spp.) and the teeth at the leaf margins are usually unicellular. Clade B members are also mainly non-Asiatic. They are typically fairly robust, distinctly stipilate, having a single, at least relatively strong costa, long setae (capsules exserted), and the peristomes are well developed or only somewhat reduced. Members of clade C are essentially Asiatic and tropical. The species of this clade usually have a strong costa and a long seta, the seta often being mammillose in its upper part. The peristome types in this clade are mixed, since both reduced and unreduced types are found. Several neckeraceous genera that were recognised on a morphological basis are polyphyletic (e.g. Neckera, Homalia, Thamnobryum, Porotrichum). Ancestral state reconstructions revealed that currently used diagnostic traits, such as the leaf asymmetry and costa strength are highly homoplastic. Similarly, the reconstructions revealed that the 'reduced' sporophyte features have evolved independently in each of the three clades.Earlier phylogenetic studies, including species belonging to the Neckeraceae, have indicated that this pleurocarpous moss family shares a strongly supported sister group relationship with the Lembophyllaceae, but the family delimitation of the former needs adjustment. To test the monophyly of the Neckeraceae, as well as to redefine the family circumscription and to pinpoint its phylogenetic position in a larger context, a phylogenetic study based on molecular data was carried out. Sequence data were compiled, combining data from all three genomes: nuclear ITS1 and 2, plastid trnS-rps4-trnT-trnL-trnF and rpl16, and mitochondrial nad5 intron. The Neckeraceae have sometimes been divided into the two families, Neckeraceae and Thamnobryaceae, a division rejected here. Both parsimony and Bayesian analyses of molecular data revealed that the family concept of the Neckeraceae needs several further adjustments, such as the exclusion of some individual species and smaller genera as well as the inclusion of the Leptodontaceae. Within the family three well-supported clades (A, B and C) can be distinguished. Members of clade A are mainly non-Asiatic and nontropical. Most species have a weak costa and immersed capsules with reduced peristomes (mainly Neckera spp.) and the teeth at the leaf margins are usually unicellular. Clade B members are also mainly non-Asiatic. They are typically fairly robust, distinctly stipilate, having a single, at least relatively strong costa, long setae (capsules exserted), and the peristomes are well developed or only somewhat reduced. Members of clade C are essentially Asiatic and tropical. The species of this clade usually have a strong costa and a long seta, the seta often being mammillose in its upper part. The peristome types in this clade are mixed, since both reduced and unreduced types are found. Several neckeraceous genera that were recognised on a morphological basis are polyphyletic (e.g. Neckera, Homalia, Thamnobryum, Porotrichum). Ancestral state reconstructions revealed that currently used diagnostic traits, such as the leaf asymmetry and costa strength are highly homoplastic. Similarly, the reconstructions revealed that the 'reduced' sporophyte features have evolved independently in each of the three clades.Peer reviewe

    COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis

    Get PDF
    To investigate the immune response and mechanisms associated with severe coronavirus disease 2019 (COVID-19), we performed single-cell RNA sequencing on nasopharyngeal and bronchial samples from 19 clinically well-characterized patients with moderate or critical disease and from five healthy controls. We identified airway epithelial cell types and states vulnerable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In patients with COVID-19, epithelial cells showed an average three-fold increase in expression of the SARS-CoV-2 entry receptor ACE2, which correlated with interferon signals by immune cells. Compared to moderate cases, critical cases exhibited stronger interactions between epithelial and immune cells, as indicated by ligand–receptor expression profiles, and activated immune cells, including inflammatory macrophages expressing CCL2, CCL3, CCL20, CXCL1, CXCL3, CXCL10, IL8, IL1B and TNF. The transcriptional differences in critical cases compared to moderate cases likely contribute to clinical observations of heightened inflammatory tissue damage, lung injury and respiratory failure. Our data suggest that pharmacologic inhibition of the CCR1 and/or CCR5 pathways might suppress immune hyperactivation in critical COVID-19

    The Subantarctic Rayadito (Aphrastura subantarctica), a new bird species on the southernmost islands of the Americas

    Get PDF
    We describe a new taxon of terrestrial bird of the genus Aphrastura (rayaditos) inhabiting the Diego Ramírez Archipelago, the southernmost point of the American continent. This archipelago is geographically isolated and lacks terrestrial mammalian predators as well as woody plants, providing a contrasted habitat to the forests inhabited by the other two Aphrastura spp. Individuals of Diego Ramírez differ morphologically from Aphrastura spinicauda, the taxonomic group they were originally attributed to, by their larger beaks, longer tarsi, shorter tails, and larger body mass. These birds move at shorter distances from ground level, and instead of nesting in cavities in trees, they breed in cavities in the ground, reflecting different life-histories. Both taxa are genetically differentiated based on mitochondrial and autosomal markers, with no evidence of current gene flow. Although further research is required to define how far divergence has proceeded along the speciation continuum, we propose A. subantarctica as a new taxonomic unit, given its unique morphological, genetic, and behavioral attributes in a non-forested habitat. The discovery of this endemic passerine highlights the need to monitor and conserve this still-pristine archipelago devoid of exotic species, which is now protected by the recently created Diego Ramírez Islands-Drake Passage Marine Park.Fil: Rozzi, Ricardo. Universidad de Magallanes; Chile. University of North Texas; Estados UnidosFil: Quilodrán, Claudio S.. Universidad de Magallanes; Chile. Universite de Fribourg;Fil: Botero Delgadillo, Esteban. Max Plank Institute for Ornithology; Alemania. Universidad de Chile; ChileFil: Napolitano, Constanza. Universidad de Magallanes; Chile. Universidad de Los Lagos; Chile. Instituto de Ecología y Biodiversidad; ChileFil: Torres Mura, Juan C.. Universidad de Magallanes; Chile. Union de Ornitologos de Chile; ChileFil: Barroso, Omar. Universidad de Magallanes; ChileFil: Crego, Ramiro D.. Conservation Ecology Center; Estados UnidosFil: Bravo, Camila. Universidad de Chile; ChileFil: Ippi, Silvina Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Quirici, Verónica. Universidad Andrés Bello; ChileFil: Mackenzie, Roy. Universidad de Magallanes; ChileFil: Suazo, Cristián G.. Universidad de Magallanes; Chile. Justus Liebig Universitat Giessen; AlemaniaFil: Rivero de Aguilar, Juan. Universidad de Magallanes; ChileFil: Goffinet, Bernard. Universidad de Magallanes; Chile. University of Connecticut; Estados UnidosFil: Kempenaers, Bart. Max Plank Institute for Ornithology; SuizaFil: Poulin, Elie. Universidad de Magallanes; Chile. Universidad de Chile; ChileFil: Vásquez, Rodrigo A.. Universidad de Magallanes; Chile. Universidad de Chile; Chil
    corecore